
,t/,_,'/J/'<__.i<, - <77-_ 2o6131

Final Report:

NASA Grant NAG 3-1472

Parallelization of the Implicit RPLUS Algorithm

" by

tz='i Id ls Z-

t

/

(/" /

Dr. Paul D. Orkwis

University of Cincinnati

Abstract

The multiblock reacting Navier-Stokes flow .solver RPLUS2D was modified for parallel

implementation. Results for non-reacting flow! calculations of this code indicate parallelization
efficiencies greater than 84% are possible for a typical test problem. Results tend to improve as the

size of the problem increases. The convergence rate of the scheme is degraded slightly when
additional artificial block boundaries are included for the purpose of parallelization. However, this

degradation virtually disappears if the solution is converged near to machine zero. Recommendations
are made for further code improvements to increase efficiency, correct bugs in the original version,

and study decomposition effectiveness.

Introduction

Computational Fluid Dynamics (CFD) is a field that continues to expand with each increase in

computer technology. The development of faster, larger memory computers has allowed engineers

to calculate solutions of bigger and more complicated flow fields. Parallel computers are the latest

extension of this technology. Machines of this type use multiple processors to perform more than one

computation concurrently. Computers exist which process multiple data streams using the same

instructions or multiple data streams with different instructions. The total operation counts of these
machines are scaled not only by processor speed but also by the number of available processors.

However, the best approach to employing parallel machines with CFD solvers is not always readily

apparent.

Explicit CFD codes are very amenable to parallel machines, but suffer in such applications as viscous

chemically reacting flows because of the inherently restrictive Courant-Friedrichs-Lewy (CFL)

stability condition. High grid resolution and stiff chemical reaction source terms require extremely

small time steps for stable calculations. Implicit CFD solvers, such as the NASA Lewis RPLUS code

[1,2], are popular because they reduce or eliminate the CFL restriction, allowing the user to employ

a time step more closely related to the physical mechanisms of interest. However, explicit schemes

allow a variety of approaches to paraUelization at both the fine and coarse grain levels. One can

efficiently parallelize at the loop level (requiting significant person-hours) or at a macro or block level

(which is convenient for codes already employing a multi-block strategy). On the other hand, implicit
schemes are not readily parallelizable in their original forms and must typically be modified at the

2

macro level using procedures such as domain decomposition.

/

In the domain decomposition approach, the solution domain is divided into subdomains that may be

computed on different processors. Examples of this partitioning are easily found in the recent

literature [3,4,5,6,7,8,9,10]. This approach is straightforward when applied to explicit schemes and

the convergence rates of the methods do not suffer typically. The only complication with these

schemes is message passing for the inclusion of out-of-block data. Conversely, implicit schemes

_hange when decomposed, because the implicit matrix system solution must be split or altered when

_he domain is distributed among the processors. This sometimes leads to degradations in convergence

r_ates, but is dependent upon the particular splitting employed and the problem being solved.

Domain partitioning at a macro level is not unique to parallel applications and has been used for some

time in multi.-block CFD algorithms for flow domains that do not have rectangular computational

topologies. _imple applications of this strategy are backstep and cavity type geometries. Multi-block

schemes can be parallelized naturally using domain decomposition techniques because their code

structure already incorporates block to block communication. An example of this parallelization is

the current research which has led to a parallel version of the two-dimensional NASA Lewis RPLUS

reacting Navier-Stokes flow solver, a code currently in use by NASA researchers and industry

engineers in its serial form. Multi-block codes of this type allow considerable decomposition flexibility

but can be constrained by logical complexities if block interface conditions are communicated to more

than one contiguous block per face. Flexibility must therefore be balanced against the inherent

inefficiencies of accrued logic overhead. Contiguous block decompositions simplify this problem by

requiring block faces to adjoin at most one other block face. One dimensional decompositions can

also be used to simplify the logical overhead but suffer because they o_en reduce the flexibility of the

potential decompositions, resulting in possible load balancing problems.

Parallelization, while straightforward for implicit multi-block algorithms, is not seamless. That is, the

parallel and serial versions of a code may not behave in exactly the same manner. This is because the

splitting generally requires more subdomains than one would naturally use for a complicated flow

field, since the number of subdomains are determined by the available processors. The presence of

the additional subdomain boundaries changes the matrix structure and can lead to reductions in

convergence rates as information must be lagged at the block interfaces. This discrepancy is usually

outweighed greatly by the advantages inherent in paraUelization, but must be accounted for when

considering parallelization options. In particular, systems with relatively small numbers of processors

(like workstation clusters) are well suited to this approach.

Other difficulties with parallelization are the architecture and operating system variations between

potential computing platforms. The considerable time investment for porting a serial code to a parallel

machine or developing a parallel algorithm from scratch must be repeated in many cases because of

these differences. Fortunately, this issue has been addressed in part by the appearance of

parallelization protocols like PVM, MPI and APPL. These approaches define a standard set of

commands that can be used when writing an application that will, in effect, translate the code to the

actual commands of the current system. This allows the user to write one set of code and port it

3

almostindiscriminatelyto otherparallelmachineswith availabledrivers.Theuseof thesystemthen
_:equiresthat a translationpackagebe writtenoncefor that particularmachine.Usersthenwrite
commandsin theprotocolscriptandlink to thetranslationsoftwareat compilationtime.Of course,
theseprotocols do requiresomeoverheadandwill reducesomewhatthe speed-upachievedby
paraUelization.

Our parallelversionof theRPLUScodeusestheMPI parallelizationprotocol. Thisprotocolwas
chosenfor manyreasonssuchasefficiency,functionalityandportability to manyof the available
computerarchitectures.Anotherveryimportantreasonfor choosingMPI is that it is a standard.This

means that all future releases of this protocol should be compatible with the old ones, hence a code

written using an older version of MPI will not become obsolete if a newer version is released.

J

'The MPI standard does not specify every aspect of a parallel program. Some aspects of parallel

programming are left to the specific implementations such as process startup, scope of error handlers

and the amount of system buffering provided for messages. Some of these specific implementations

are: MPICH (developed by Argonne National Laboratory and Mississippi State University), LAM

(developed by Ohio State University) and CHIMP (developed by Edinburgh Parallel Computing

Center). Our parallel version of the RPLUS code uses MPICH version 1.0.12.

In the current work a parallel version of the implicit RPLUS2D solver was developed for application

with the MPI protocol. An automatic two-dimensional domain decomposition approach was

employed as a means of static load balancing. Residuals and convergence rate issues were briefly

explored. The following sections describe the approach employed, give the details for running the

algorithm, review the experimental approach used, discuss the findings of the research, and

recommend future directions to be taken for improving the code.

Approach

The RPLUS2D code is an implicit reacting Navier-Stokes flow solver incorporating a multiple block

strategy. This approach makes the code very amenable to a macro-level domain decomposition

strategy as opposed to a finer grain parallelization at the loop level. The code is therefore geared

toward parallel machines with relatively few processors, such as the Cray C-90 or workstation

clusters. The current research capitalized on the block-block boundary data structures that are already

in place in RPLUS for parallelization of the code. The data exchange at the block boundaries is

implemented using the MPI_SENDRECV subroutine. This is a blocking subroutine, therefore, tight

synchronization is achieved among the blocks. A flow chart of the parallel version of the RPLUS code

is given in Figure 1.

Two options are included for domain decomposition, an automatic domain decomposition (ADD)

approach and a user defined approach. Both approaches assume contiguous block faces. The ADD

approach assumes only a Cartesian topology so far. Other topologies will hopefully be implemented

in the future. In this approach, if the size of the domain is evenly divisible by the number of

processors, then the domain is split into blocks of equal sizes. However, if the domain size is not

4

evenlydivisiblebythe numberof processors,thenthedomainis split in such a way to give optimal

load balancing. This is done using the subroutine MPE_DECOMP1D which is included in this report.

The user defined approach allows the code to be implemented with some external decomposition

strategy. If this approach is chosen, then the user employs the original procedure in the RPLUS code

to supply the bounds of each block explicitly.

It is important to recognize that since the former represents a static load balancing approach no

mechanism exists to include load balancing alterations,!caused by inclusion of the reacting flow

equations. This can be a problem because the ADD assu_es equal work per node. This may not be
the case if the reactions do not occur at all nodes or if work involved with the iterative determination

of the reaction rate source terms is nonuniform. The current research does not address these issues.

The following changes were made to the code to enable parallelization and to enhance efficiency.

't
• The makefile for the original RPLUS code was replaced by a makefile for the parallel

version. Compilation of the different pieces of the code and linking to the appropriate libraries

is done in this file. Changes made to a certain part of the code will not necessarily require a

complete recompilation.

The file gfid.dat is the same as that used in the original RPLUS code; no changes have been

made.

The file mpifh is necessary in every MPI Fortran program and subprogram to defne various
constants and variables. This file comes with the MPI implementation MPICH.

The file PA1LF contains only a parameter statement to define the size of the problem, number

of species, number of reaction steps and number of blocks. The user should be sure to change

this file when changing any of these parameters. A complete recompilation will be required

when this file is changed.

When changing the number of processors needed for running a certain problem, make sure

to change the number of blocks in the file PAR.F to match this number. Actually, any value

for the number of blocks which is equal to or greater than the number of processors will

suffice since the number of blocks is used only for memory allocation purposes. Therefore,

if the number of blocks is larger than the number of processors, there will be some memory

waste, but the code will run fine without the need for complete re-compilation if the number

of processors is changed to any other value which is still less than the number of blocks given

in the PAR.F file.

The original RPLUS code was segmented into various *.f files for better readability and

improved functionality. This also enhances efficiency since changes made to the files do not

force a complete code recompilation. A complete set of these codes is included with this

report in a hard disk as an attachment.

5

The input2d.f file is a modified version of the original. The following changes must be

remembered when running the parallel version of the code. ,"

1. A logical variable AUT_SPLIT was added to switch on the automatic domain

decomposition option. If this variable is set to .TRUE., the user no longer needs to

specify the values of IBEG, IEND, JBEG and JEND for any blocks. If a user defined

decomposition is employed, this variable should be set to .FALSE. and IBEG, IEND,

JBEG and JEND should be supplied for each block.
• , / . .

2. In relataon to #1, the arrays defining the boundary cgndmon types on the edges of the

blocks have been changed. The user now gives the} boundary condition type only on

the boundaries of the domain without reference to any particular block. The code will

automatically map these values to the appropriate blocks and take care of the internal

block interfaces. All interior block edges were assumed to have boundary condition

type 6. The change is summarized below ,/

Original changed to

IFCBEG(J, NB) IFCBEA(J)

IFDBEG(J,NB) [FDBEA(J)

IFCEND(J, NB) IFCENA(J)

IFDEND(J,NB) IFDENA(J)

The original arrays shown above appear in the common block BNDIDX and their

replacements can be found in BNDIDXA. Likewise, the common blocks BNDPPI

and BNDPPJ are replaced by the common blocks BNDPPIA and BNDPPJA,

respectively. Both the original and replacement common blocks remain in the code.

Run-Time Details

To compile and run the code using MPICH the following sequence must be followed after the above
modifications have been accounted for.

or

1. make rplus2d • compiles the code

2. mpirun-np<numberofprocessors>rplus2d" runs interactively while the

system chooses the machines for running the code.

2b. mpirun -p4pg <file name> rplus2d runs interactively but forcing the

code to run on a list of machines given in the <filename>. The default <filename>

is procgroup. A sample ofprocgroup is given below:

6

or

,"lace01 0 /homel/fsnidal/APPL/PARA/rplus2d

lace05 1 /homel/fsnidal/APPL/PARA/rplus2d

lace08 1 Anomel/fsnidal/APPL/PARA/rplus2d

lacel2 1 /homel/fsnidal/APPL/PARA/rplus2d

Ih this sample file, the executable rplus2d available in the directory
/home l/fsnidal/APPL/PARA will run on the machines laceO 1, lace05, lace08

an!d lacel2. The job has to be submitted from lace01 (the first entry in the first

ro,w which corresponds to a zero entry in the second column of the same row).

2c. bsub -n,<# ofproc.> mpichjob rplus2d " runs in batch mode

You have a choice inJthis approach of the number of processors. Note that you should give the full

pathname to the executable when using LSF on the cluster. The file mpichjob is a simple script file

to run batch jobs using MPICH under LSF. For more details, please check the location

http://www.lerc.nasa.gov/WWW/ACCL/mpi.html. The file mpichjob is listed below

#T/bin/sh

#

mpichjob

#

This sample script is a wrapper for running MPICH jobs under lsbatch.

Submit job by saying "bsub [otheroptions] -n k mpichjob command line",

#

#

#

#

#

#

#

#

#

#

where k is the number of hosts to use, mpichjob is the name of this script,

and command line is the command to run. Note that you must use the

full path name to your MPI program if it's not in your normal search path.

e.g. bsub -n 3 mpichjob cpi

Note the variable LSB_HOSTS is assigned by lsbatch system when this script

is started by lsbatch.

Written August 3, 1995

COMMANDLINE="$@"

It tl It t! it It tl 1! tn It t# tl It tt tl 11 nl It 1l

#Generate procgroup
I1 It II II II II It It If It II If II It It II it It II

PROCGROUP=$HOME/.lsbatch/host$$." hostname"

rm -f $PROCGROUP
nhosts=0
for word in SL'SB_HOSTS
do

if [$nhosts-eq0] ; then
echo"local 0 $COMMANDLINE" >> $PROCGROUP
FIRST=Sword

e!_se

fi!echo Sword "1 $COMMANDLINE" >> $PROCGROUP

nhosts=" expr $nhosts + 1'
done

echo 'RUNNING ON' $FIRST
echo 'PROCGROUP START'

cat $PROCGROUP

echo _PROCGROUP END'

echo

_llllllllllllllllllllllllllllllll

run mpi job and save exit status
I11111 II II I111 It I11111 II It' II I_ II II If II II II II I! II IJ II

rsh $FIRST "$COMMANDLINE -p4pg $PROCGROUP"

exstat=$?

cleanup and exit
__ !I !! !_.!! !/!I !!/! !! !!
rl _i rl ,i Jr f_ ,J ,i ii ,r ,i ,l r, ,l _r rl Pf i,

rm -f $PROCGROUP

exit $exstat

Experimental Procedure

The performance indicator used here is the total execution time needed for running the code after

establishing the connections among the different machines. This time includes two I/O periods: the

first period is at the beginning of the code to read the grid file, block bounds and restart files if

needed, while the second period is at the end of the code to write the output and restart files.

According to the MPI 1.0 standard, there is no standard parallel I/O yet. However, it is hopefully

going to be a part of MPI 2.0 which is expected to be released in the near future. Therefore, the I/O

portions of the code were done in a serial manner where a master processor controls the

: 8

synchronization of the different messages. Even though the I/O part was done serially, it was found

that this part takes a negligible amount of time (less than 0.1%) compared to the total running time.

The execution time was measured using the MPI function MPI_WTIME() which gives the wall clock

time between two different time stamps. For each number of processors, the test problem was run

at least three times and then the execution times were averaged. Running the problem with varying

number of processors, we can

Execution time for 1 process measure the speedup. Speedup for p
Speedup =

Execution time for p prcocesses processors is normallyjdefined as

Parallelization Efficiency =

ency was calculated as

Actual Speedup

Ideal Speedup
Where Ideal Speedup = p

The

paral

leliza

tion.

effr_i

All the experiments were conducted in a single user mode. The next section will discuss the results

of some of these experiments.

Results

The results of this research are presented in the form of a supersonic flow at (M,o =4.0, P=0.01 atm)

past a 10 degree half angle cone at zero incidence test case problem. Two grids were tested with a

variety of processor configurations. Non-reacting flow simulations and simulations of the cone with

an H 2 - Air chemical reaction model are included. The data illustrate the flow field results obtained

in both cases and present a variety of parallel statistics from runs on a Cray Y-MP and on the NASA

Lewis Workstation Cluster known as Lewis Advanced Cluster Environment (LACE). The changes

in parallelization efficiency due to the number of processors and the change in the convergence

behavior of the scheme are illustrated.

Figure 3 demonstrates the near equality of the pressure contours obtained with the non-reacting

computations of the cone obtained with single and multi-block computations. A 61X41 grid was

9

used. Small differences can be seen between the two results which were due to the block-to-block

internal boundary point interpolation procedure existing in both versions of the code. This contention

was verified by computing the multiple block case on both single and multiple processors, and the,"

results were found to be identical. In addition to the differences in the equality of the results the

convergence rate of the scheme decreases considerably as the number of domains increases, as

illustrated in figure 2. However, it is remarkable to note that the convergence plots of the five runs

eventually join together for 1[p u 112_ 3.10-6, whereas, above this value the same parameter was

consistently less steep as the number of processors increased. This result indicates a penalty for

utilizing the parallel algorithm apart from any communication overhead as a result of simply splitting
the problem up for paraUelization. This issue was not explored further, but must be considbred when

one wishes to consider parallelizing a code. It is also important to recognize that the "level_' to which

one wishes to converge the solution is an issue in this regard, since convergence levels near machine

zero are relatively unaffected by the paraUelization.

Figures 4 and 5 show the different timing results for the cases and their percentage variations from /

the mean. Timings with and without the I/O portion are included. It is seen that results vary nearly

±10% from the mean value for the 6 lx41 grid test case. However, this number drops to less than

+2% from the mean value for the 12 l x81 grid, where block-to-block communication represents a

smaller fraction of the total workload.

It should be noted that this test was made using only the Ethernet connection and not the other

available communications ports. It was felt that this type of connection would be more representative

of those testing workstation clusters for the first time, and would provide a more meaningful

comparison.

Figures 6 and 7 illustrate the execution time versus number of processors for the 61x41 and 121x81

grids, respectively. These plots compare observed times versus those expected with ideal speed-up

and versus results obtained on a single processor of a Cray Y-MP. The results clearly indicate that

the actual execution time is slightly greater than the ideal, as expected. The reader will also see that

in both cases approximately 4 LACE cluster workstations were needed to effectively match the

performance of a single Y-MP processor. The results are slightly better for the larger grid size. We

should state here though that the runs were performed using a single precision on both the

workstations and the YMP. This is an unfair comparison since single precision on the YMP

corresponds to double precision on the workstations (64 bit versus 32 bit.) However, an effort will

be made to run the problems using double precision on the workstations to determine the effect on

the timing results. It is expected that there will be minimal impact because the IBM machines do all

arithmetic operations in double precision format. Hence, the only impact will be on communication

overhead (which will double). However, this is a small fraction of the workload for the envisioned

applications.

The improved performance experienced with the larger grid is further evident in figure 8, which plots

for both grids the speed-up obtained with parallelization versus the ideal speed-up. These results are

plotted in terms of a parallelization efficiency in figure 9. Both figures indicate that the smaller grid

10

is beginning to experience communication bottle necks when large numbers of processors are used.

It is important to note that although the LACE, fluster is made up of 32 machines only 16 are the

faster 590s. Figure 10 illustrates speed-up when the entire cluster is utilized with equal partition of

work. Clearly this situation can be improved with a simple static load balancing approach that

accounts for differences in processor speed. However, the current code does not yet do this

automatically.

i

Another area requiring an improved lo_d balancing technique are the reacting flow cases. Figure 11

contains the pressure contours for thle same cone as above in an H2-Air reacting mixture with a

stoichiometric air to fuel ratio and T,_ =1200 K ° . The reacting flow option was tested late in this

research and parallelization statistics are not yet available.

In summary, the above results demonstrate the eff_ectiveness of the parallel RPLUS2D code for non-

reacting calculations. Improvements to the scheme are still required and are being pursued.

Parallelization efficiencies greater than 84% were achieved with the larger grid size and indicate that

the technique would be more useful for even larger grids. No attempt was made to study the effect

of different block sizes, shapes or orientations. Convergence rate degradation was experienced but

was not a factor if the code was converged near to machine zero. Specific convergence performance

is therefore subject to desired convergence level.

Additional Modifications

Apart from the changes made to allow parallelization and improve implementation efficiency, a

modification was made to the basic solver to install Roe's flux difference splitting as a solver option.

The reason for this is that it was found that the Van Leer's flux vector splitting currently installed in

the code is too dissipative especially when contact discontinuities are encountered. A shock-boundary

layer interaction problem was run with both the Van Leer's flux splitting technique and the Roe's flux

difference splitting technique. Much more accurate results were obtained with the Roe's solver

especially within the separation zone inside the boundary layer.

Recommendations

Several issues have not been addressed in the current work and should be pursued for more useful

application of the parallel RPLUS2D code.
• More efficient use of memory should be made. Currently, memory locations are

included for the entire grid on each processor. This must be changed so that each

processor reserves memory for only those data on which it will operate.

• A study should be made of the effect on the convergence rate and solution of grid

block orientation. It is possible that partitioning in only 1 direction might enhance the

convergence rate, i.e. ifa dominant flow direction is present (as with boundary layers)

it might be possible to decompose the solution domain such that block interfaces are

aligned with and do not cross this direction.

11

A dynamicloadbalancingapproachneedsto beincorporatedto achieveefficientload
balancingonheterogeneousclusters,multiuserenvironments,andflow fieldswith an
unevendistributionof chemicalreactionsource'termswork. An historicalapproach
ispossiblefor thisneed.
Additionaltestcases should be computed to assess the ability of the parallel code to

perform.

Studying the performance of the different communication networks available on the

cluster especially when considering/larger problem sizes and having communication
bottlenecks.

Running the parallel version on different architecture such as the Cray T3D, IBM SP2

and assessing the performance on these architectures.

Project Personnel

The following personnel were funded by the research.

• Dr. Paul D. Orkwis (PI) '-

• Mr. Daniel B. Kim

• Mr. Nidal Ghizawi

Mr. Kim lett the university before completing his degree. Mr. Ghizawi is a Ph.D. candidate under the

co-direction of Dr. Orkwis and Dr. Abdallah. Unfortunately, considerable amounts of data and code
were lost in the transition between the two students.

.

2.

,

.

.

References

Tsai, Y.-L. P., "Recent Update of the RPLUS 2D/3D Codes," AIAA Paper 91-0094, 1991.

Hsiegh, K.C. and Tsai, Y.-L. P., "Comparative Study of Computational Efficiency of Two

LU Schemes for Non-Equilibrium Reacting Flows," AIAA Paper 90-0396, 1990.

Keyes, D., "Domain Decomposition: A Bridge Between Nature and Parallel Computers,"

Adaptive, Multilevel, and Hierarchical Computational Strategies, ASME, AMD, Vol. 157,

ASME, New York, NY, pp. 293-334.

Zapach, T.G., and Djilali, N., "Study of Accuracy and Parallel Eflaciency of Domain

Decomposition Applied to a Finite Volume Method," Advances in Computational Methods

in Fluid Dynamics, ASME, FED, Vol. 196, 1994, ASME, New York, NY, pp 167-176.

Shimano, K., and Arakawa, C., "Numerical Simulation of Incompressible Flow on a Parallel

Computer with the Domain Decomposition Technique," Transactions of the Japan Society

of Mechanical Engineers, Part B, Voi. 59, No. 567, November 1993, pp. 3340-3346.

.

.

. •

/

10.

12

Drikakis, D., and Schreck, E., "Parallel Multi Level Calculations for Viscous Compressible

Flows," CFD Algorithms and Applications for Parallel Processors, ASME, FMD, Vol. 156,

1993, ASME, New York, NY, pp. 9-23.

Schreck, E., and Peric, M., "Computation of Fluid Flow With a Parallel Multigrid Solver,"

International Journal for Numerical Methods in Fluids, Vol. 16, No. 4, February 1993, pp.

303-327.

Bhogeswara, 1L, and Killough, J.E., "Domain Decomposition and Multigrid Solvers for Flow

Simulations in Porous Media on Distributed Memory Parallel Processors," Journal of

Scientific Computing, Vol. 7, No. 2, June 1992, pp. 127-162.

Ewing, R. E., "Survey of Domain Decomposition Techniques and Their Implementation,"

Advances in Water Resources, Vol. 13, No. 3, September 1990, pp. 117-125.

Braaten, M. E., "Solution of Viscous Fluid Flows on a Distributed Memory Concurrent

Computer," International Journal for Numerical Methods in Fluids," Vol. 10, No. 8, June

1990, pp. 889-905.

Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Flow Chart of the New RPLUS Code.

Comparison of pressure contours for single and multi-block domain decompositions.

Non-reacting mixture.

Norm-2 of A pu for the 61x41 grid obtained with various processors.

Variation in Time Measurements, 6 lx41 grid,

Variation in Time Measurements, 12 lx81 grid.

Execution Time for the 61x41 Grid.

Execution Time for the 121 x81 Grid.

Figure 8

Figure 9

Figure 10

Figure 11

13

Speedup for Different Grid Sizes.

Parallelization Efficiency.

Speedup Versus Number of Processors, Full LACE Cluster.

Comparison of the Pressure Contours for the H,-Air Reacting Case (a) On a Single
Processor (b) on 16 Processors.

